
DIGITAL SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE

ARRAYS

J. Serrano, CERN, Geneva, Switzerland

Abstract
This paper presents an introduction to digital hardware

design using Field Programmable Gate Arrays (FPGAs).

After a historical introduction and a quick overview of

digital design, the internal structure of a generic FPGA is

discussed. Then we describe the design flow, i.e. the steps

needed to go from design idea to actual working

hardware. Digital signal processing is an important area

where FPGAs have found many applications in recent

years. Therefore a complete chapter is devoted to this

subject. The paper finishes with a discussion of important

peripheral concepts which are essential for success in any

project involving FPGAs.

HISTORICAL INTRODUCTION

Digital electronics is concerned with circuits which

represent information using a finite set of output states

[1]. Most of the applications use in fact just two states,

which are often labeled ‘0’ and ‘1’. Behind this choice is

the fact that the whole Boolean formalism becomes then

available for the solution of logic problems, and also that

arithmetic using binary representations of numbers is a

very mature field.

Different mappings between the two states and the

corresponding output voltages or currents define different

logic families. For example, the Transistor-Transistor

Logic (TTL) family defines an output as logic ‘1’ if its

voltage is above a certain threshold (typically 2.4 V). For

the same family, if we set the input threshold for logic ‘1’

as 2 V, we will have a margin of 0.4 V which will allow

us to interconnect TTL chips inside a design without the

risk of misinterpretation of logic states. This complete

preservation of information even in the presence of

moderate amounts of noise is what has driven a steady

shift of paradigm from analogue to digital in many

applications. Here we see as well another reason for the

choice of binary logic: from a purely electrical point of

view, having only two different values for the voltages or

currents used to represent states is the safest choice in

terms of design margins.

Historically, TTL chips from the 74 series fuelled an

initial wave of digital system designs in the 1970s. From

this seed, we will focus on the separate branches that

evolved to satisfy the demand for programmability of

different logic functions. By programmability, we mean

the ability of a designer to affect the logic behavior of a

chip after it has been produced in the factory.

A first improvement in the direction of

programmability came with the introduction of Gate

Arrays, which were nothing else than a chip filled with

NAND gates that the designer could interconnect as

needed to generate any logic function he desired. This

interconnection had to happen at the chip design stage,

i.e. before production, but it was already a convenient

improvement over designing everything from scratch. We

have to wait until the introduction of Programmable

Logic Arrays (PLAs) in the 1980s to have a really

programmable solution. These were two-level AND-OR

structures with user-programmable connections.

Programmable Array Logic (PAL) devices were an

improvement in performance and cost over the PLA

structure. Today, these devices are collectively called

Programmable Logic Devices (PLDs).

The next stage in sophistication resulted in Complex

PLDs (CPLDs), which were nothing else than a collection

of multiple PLDs with programmable interconnections.

FPGAs, in turn, contain a much larger number of simpler

blocks with the attendant increase in interconnect logic,

which in fact dominates the entire chip.

BASICS OF DIGITAL DESIGN

A typical logic design inside an FPGA is made of

combinatorial logic blocks sandwiched in between arrays

of flip-flops, as depicted in Fig. 1. A combinatorial block

is any digital sub-circuit in which the current state of the

outputs only depends, within the electrical propagation

time, on the current state of the inputs. To this group

belong all the well known basic logic functions such as

the two-input AND, OR and any combination of them. It

should be noted, that logic functions of arbitrary

complexity can be derived from these basic blocks.

Multiplexers, encoders and decoders are all examples of

combinatorial blocks. The input in Fig. 1 might be made

of many bits. The circuit is also supplied with a clock,

which is a simple square wave oscillating at a certain

fixed frequency. The two flip-flops in the circuit, which

might be flip-flop blocks in the case of a multi-bit input,

are fed with the same clock and propagate the signals

from their D inputs to their Q outputs every time there is a

rising edge in the clock signal. Apart from that very

specific instant in time, D is disconnected from Q.

Fig. 1: A typical digital design

The structure of the circuit is thus very simple, and its

application as a template covers the vast majority of

digital design requirements in standard applications, such

as the control of particle accelerators. The designer only

needs to ensure that the worst-case propagation delay

between any of the inputs to the combinatorial logic block

and any of its outputs is less than one clock period. If that

condition is satisfied, the inputs to the second stage of

flip-flops will be stable by the time the next clock edge

reaches them. As we shall see later, the process of

ensuring this timing closure is nowadays automated, so

the designer need only be concerned with the

specification of the logic behavior of the circuit.

The main merit of this design strategy, called

synchronous design, is that the analysis of the possible

timing failures and race conditions is greatly simplified.

One might design otherwise, feeding for example the

clock input of a flip-flop from the output of a

combinatorial clock, in what is called a ‘gated clock’

circuit, and that design might give good results during

simulation. But then, slight changes in the different delays

of the signals might result in circuit malfunction. Slight

changes of delays in the synchronous design paradigm

can be easily accommodated by taking some safety

margin in the maximum allowed time for any

combinatorial signal path. This simple recipe contrasts

with the ‘many-body problem’ of examining effects of

delay changes in asynchronous designs.

FPGA STRUCTURE

A typical modern FPGA (see Fig. 2) provides the

designer with programmable logic blocks that contain the

pool of combinatorial blocks and flip-flops to be used in

the design.

Fig. 2: Internal structure of a generic FPGA (courtesy

Xilinx, Inc.)

In addition, vendors acknowledge the fact that logic is

often used in conjunction with memory, and typically

include variable amounts of static Random Access

Memory (RAM) inside their chips. Clock conditioning

has also become commonplace, and support in the form

of Delay Locked Loops (DLLs) and Phase Locked Loops

(PLLs) is also provided inside the same silicon chip.

Finally, an FPGA chip does not lead a solitary life

isolated from the rest of the world. It needs to be easily

interfaced to other chips or external signals. In order to

make this interfacing easier, FPGA vendors have invested

a great deal of effort in enhancing the flexibility of the

input/output blocks behind the chip pads. Each pad can

serve as an input, an output, or both. The list of electrical

standards supported is extensive, and novel techniques for

maximizing bandwidth, such as clocking data in using

both edges of the clock, are widely supported.

All the components shown in Fig. 2, however, typically

account for less than 20% of the silicon inside an FPGA

chip. What is not shown is the large amounts of

programmable interconnect and the auxiliary circuits

which ‘program’ the generic blocks to become a well-

defined piece of logic. This silicon inefficiency is the

price to pay for programmability, and is also the reason

why FPGAs have traditionally been more successful in

high-end, low-volume applications in the past, with

Application Specific Integrated Circuits (ASICs) taking a

leading role for high-volume applications. With Moore’s

law, however, the line between high-end and low-end

applications is continuously shifting, and FPGAs are

more and more used in domains which used to be

dominated by ASICs and Digital Signal Processors

(DSPs).

To overcome the silicon inefficiency problem, FPGA

vendors often include hardwired Intellectual Property (IP)

cores inside the chips for functions identified as recurrent

in many designs. These non-programmable blocks include

general purpose processors, high speed serial interfaces,

arithmetic blocks and Ethernet Medium Access Control

(MAC) units.

DESIGN FLOWS

The designer facing a design problem must go through

a series of steps between initial ideas and final hardware.

This series of steps is commonly referred to as the ‘design

flow’. First, after all the requirements have been spelled

out, a proper digital design phase must be carried out. It

should be stressed that the tools supplied by the different

FPGA vendors to target their chips do not help the

designer in this phase. They only enter the scene once the

designer is ready to translate a given design into working

hardware.

The most common flow nowadays used in the design of

FPGAs involves the following subsequent phases:

- Design entry. This step consists in transforming

the design ideas into some form of computerized

representation. This is most commonly accomplished

using Hardware Description Languages (HDLs). The two

most popular HDLs are Verilog and the Very High Speed

Integrated Circuit HDL (VHDL) [2]. It should be noted

that an HDL, as its name implies, is only a tool to

describe a design that pre-existed in the mind, notes and

sketches of a designer. It is not a tool to design electronic

circuits. Another point to note is that HDLs differ from

conventional software programming languages in the

sense that they don’t support the concept of sequential

execution of statements in the code. This is easy to

understand if one considers the alternative schematic

representation of an HDL file: what one sees in the upper

part of the schematic cannot be said to happen before or

after what one sees in the lower part.

- Synthesis. The synthesis tool receives HDL and

a choice of FPGA vendor and model. From these two

pieces of information, it generates a netlist which uses the

primitives proposed by the vendor in order to satisfy the

logic behavior specified in the HDL files. Most synthesis

tools go through additional steps such as logic

optimization, register load balancing and other techniques

to enhance timing performance, so the resulting netlist

can be regarded as a very efficient implementation of the

HDL design.

- Place & route. The placer takes the synthesized

netlist and chooses a place for each of the primitives

inside the chip. The router’s task is then to interconnect

all these primitives together satisfying the timing

constraints. The most obvious constraint for a design is

the frequency of the system clock, but there are more

involved constraints one can impose on a design using the

software packages supported by the vendors.

- Bit stream generation. FPGAs are typically

configured at power-up time from some sort of external

permanent storage device, typically a Flash memory.

Once the place and route process is finished, the resulting

choices for the configuration of each programmable

element in the FPGA chip, be it logic or interconnect,

must be stored in a file to program the Flash.

Of these four phases, only the first one is human labor

intensive. Somebody has to type in the HDL code, which

can be tedious and error-prone for complicated designs

involving, for example, lots of digital signal processing.

This is the reason for the appearance, in recent years, of

alternative flows which include a preliminary phase in

which the user can draw blocks at a higher level of

abstraction and rely on the software tool for the

generation of the HDL. Some of these tools also include

the capability of simulating blocks which will become

HDL with other blocks which provide stimuli and

processing to make the simulation output easier to

interpret. The concept of hardware co-simulation is also

becoming widely used. In co-simulation, stimuli are sent

to a running FPGA hosting the design to be tested and the

outputs of the design are sent back to a computer for

display (typically through a Joint Test Action Group

(JTAG), or Ethernet connection). The advantage of co-

simulation is that one is testing the real system, therefore

suppressing all possible misinterpretations present in a

pure simulator. In other cases, co-simulation may be the

only way to simulate a complex design in a reasonable

amount of time.

DIGITAL SIGNAL PROCESSING USING

FPGAS

Clearly the main advantage of FPGAs over

conventional DSPs to perform digital signal processing is

their capability to exploit parallelism, i.e. replication of

hardware functions that operate concurrently in different

parts of the chip. Figure 3 shows how a Finite Impulse

Response (FIR) filter could be implemented in both

platforms. While the DSP needs 256 clock ticks to

calculate an output sample, the FPGA generates a new

sample for every clock cycle. Even if DSP chips can be

clocked faster than FPGAs, the difference is in no case

larger than a factor of 10. If one adds that many such

filters can exist concurrently and interact inside the same

FPGA, it is easy to see that DSPs are no match for FPGAs

in high performance signal processing applications [3].

Fig. 3: FIR filter comparison between DSP and FPGA

Another advantage of FPGAs is the flexibility for

trading off between area and speed until very late in the

design cycle. Figure 4 shows three different

implementations of a sum of products, from a full

expansion using more silicon to a minimalist

implementation which takes more clock cycles to

generate a result.

Fig. 4: Illustrating the speed/area trade-off in FPGAs

In this section, we give a basic introduction to fixed-

point arithmetic and then touch briefly upon two

interesting techniques for processing fixed-point signals:

distributed arithmetic and the COordinate Rotation

DIgital Computer (CORDIC) algorithm. The interested

reader will find more details in the references at the end

of this document.

Fixed point arithmetic

In FPGA design, one typically uses a two’s

complement fixed-point representation of numbers.

Floating point design is perfectly feasible, but the high-

performance applications typically targeted by FPGAs

can very often be served adequately by using enough bits

in a fixed-point representation. This is another advantage

of FPGAs: the possibility to tailor the bus widths in

different parts of the design to satisfy the final precision

requirements. Figure 5 shows an example of fixed-point

two’s complement representation, where we have taken 3

of the bits for the integer part and 5 for the fractional part.

In reality, as we shall see, an adder or any other arithmetic

circuit does not know about our decision on how many

bits to interpret as fractional. This is purely an

interpretational issue, so for all practical purposes, one

can think of fixed-point arithmetic as integer arithmetic.

Fig. 5: fixed-point two’s complement representation of

signed numbers using 3 integer bits and 5 fractional bits

As an introductory example, let’s see how one can

make a circuit that performs simple addition or

subtraction of 4-bit numbers using logic gates. This will

be a combinatorial circuit with 9 inputs (4 per input and 1

for controlling if we add or subtract) and 5 outputs (the

final result). Notice that we need to have one extra bit in

the output because the addition/subtraction of two 4-bit

numbers can result in a 5-bit number.

We start with the full adder circuit of Fig. 6. It is easy

to see that this circuit made of AND, OR and XOR gates

takes two bits and a carry (maybe from a preceding stage)

and generates a proper sum and carry out.

Fig. 6: a full adder circuit

Out of many of these Full Adder (FA) cells, one can

build the circuit of Fig. 7, which takes two 4-bit signed

numbers and adds them together if the Control signal is

‘0’.

Fig. 7: 4-bit full add/subtract

Otherwise, a subtraction is performed. Although these

days one would generate this circuit with a simple HDL

statement, it is enlightening to understand what the

underlying hardware looks like. More complicated blocks

to multiply, divide, take a square root, etc can be

synthesized using these basic blocks and the reader is

referred to the specialized literature for details [3].

One question that arises immediately is what to do with

this arithmetic bus that gets wider and wider as we

cascade more and more operations one after the other. At

some point, the bus width will become inconveniently

large. We will be wasting bits with unnecessary

information, and our timing constraints could be

compromised as the combinatorial paths traverse more

layers of logic before hitting the next flip-flop. One

example could be a feedback system that generates an

analog signal towards a Radio Frequency (RF) cavity

using a 16-bit Digital to Analog Converter (DAC) fed by

an FPGA. There would be no point in keeping an internal

representation of say 50 bits and then collapse it all at the

very end to feed the DAC with only 16 bits. The solution

to this problem is to control the width after each operation

by judiciously choosing a suitable number of bits to

represent the intermediate results. Figure 8 shows two

ways of doing this: truncation and rounding. In

truncation, some of the fractional bits are taken out before

feeding the result to the next stage. In rounding, a ‘1’ is

added to the most significant bit (of the ones to be taken

out) before truncation.

Fig. 8: truncation vs. rounding in fixed-point

representation

Notice that in two’s complement, truncation is a biased

operation. The output of truncation will always be a

smaller number than the input. If an unbiased scheme is

needed, then rounding should be used at the expense of

the extra addition involved. The loss in precision incurred

by taking some of the bits out can be studied statistically

by modeling rounding or truncation as a source of white

noise with an amplitude dependent on the number of bits

eliminated [4].

Distributed Arithmetic

Digital signal processing is all about sums of products.

For example, if a generic filter is fed with an input

sequence x[n], we can write its output as

 (1)

where c[n] are the filter coefficients. If these

coefficients are constant, and assuming the input signal to

be B bits wide, we can rearrange the terms in a sequence

that will end up suggesting an alternative hardware

implementation. We begin by re-writing (1) as

 (2)

where xb[n] is bit number b of x[n], i.e. either ‘0’ or ‘1’.

After rearranging:

 (3)

and the term in parentheses can be implemented as a

Look Up Table (LUT) with N inputs, as suggested in Fig.

9.

Fig. 9: Distributed Arithmetic implementation of a

filter

The filter implemented in this way has no need of

hardware multipliers, and generates a result every B ticks,

independent of the filter length N. By increasing the

number of LUTs and replicating hardware, one can trade-

off latency versus area. The extreme case would be full

parallelization: replicating B times to get one output

sample per clock tick.

The CORDIC algorithm

The CORDIC is a circuit that iteratively rotates an

input vector (x(1), y(1)) and generates an output vector

(x(2), y(2)), where x and y are the Cartesian coordinates

of the vectors. There are two modes of operation. In

rotation mode, an angle accumulator is set to the desired

rotation angle, and the CORDIC approximates that angle

by performing elementary rotations of decreasing angles.

The output is the input vector rotated by the specified

angle. In vectoring mode, the CORDIC block rotates the

input vector using the same table of decreasing angles

until the resulting vector is aligned with the horizontal

axis. In this mode, the result is the angle accumulated

throughout the whole rotation process. The trick in the

CORDIC algorithm is to constrain the set of angles to

those whose tangent can be expressed as 2
-i
, i being the

iteration index. Then the rotation operations for these

angles do not need any specific multipliers, since a

multiplication by 2
-i
 is just a right-shift by i places. This

produces a very efficient hardware implementation in

terms of area and speed. Each iteration generates roughly

an extra bit of precision in the result. Among the several

things one can calculate with a CORDIC, we can

highlight the following:

- Magnitude of a vector: it is found on the x of the

output vector after operating the CORDIC in vectoring

mode.

- Sine and cosine of an angle: found by feeding an

input vector with x=1, y=0 and setting the CORDIC to

work in rotation mode with the specified angle.

More uses of the CORDIC as well as a detailed

description on its internal features and ways to accelerate

it can be found in the references [5].

FPGAS IN REAL WORLD DESIGNS

This section is devoted to design aspects which are

encountered in real projects. The FPGA designer will find

none of these problems while simulating behavioral HDL

in a computer, but they are paramount for the success of

any FPGA project.

Performance boosting techniques

We already discussed the benefits of synchronous

design. The place & route tool will analyze the timing

constraints and optimize the placement and routing in

such a way as to meet these constraints. But what if it

can’t? If the delays due to propagation through individual

gates are already higher than the specified clock period,

there is nothing the tool can do to meet the specification.

Remember the tool’s degrees of freedom are just related

to where to place blocks and how to interconnect them.

The interconnect delay will never be less than 0, and it

has to be added to gate propagation delays which are fully

determined by the synthesized netlist. So if the gate

propagation delays already exceed the specified clock

period, it’s mission impossible for the place & route tool.

Delays in modern designs can be as much as 90% due

to routing and 10% due to logic. The routing bit is due to

long routes and capacitive loading on the nets. Many

synthesis tools automatically insert buffers in some nets

to provide more current to drive the capacitive loads,

therefore decreasing routing delay, as depicted in Fig. 10.

Fig. 10: Automatic buffer insertion example

The automatic replication of registers is another useful

technique. This can be set as an option for those synthesis

tools that support it, or it can be done by hand at the HDL

level. Figure 11 illustrates the principle. The nets coming

out of the flip-flop after the producer are going to four

different destinations, potentially covering great lengths

inside the chip. After the flip-flop is duplicated, each of

the outputs only has to serve two destinations, so the

timing constraints become easier. If there were

combinatorial logic after the first flip-flop, it would also

be replicated. The HDL specification is therefore fully

respected.

Fig. 11: Automatic replication of registers

Another problem case concerns long combinatorial

delays between flip-flop stages. As we said earlier, there

is nothing that the place and route tool can do in this case.

The solution must come from the synthesis tool or the

designer. Retiming – also known as register balancing – is

a technique that can be used in these cases. Figure 12

shows how it works. Some of the combinatorial logic is

passed to the next stage in the pipeline so that the

maximum delay in each stage remains within the

specifications.

Fig. 12: Retiming

If retiming is not possible, one can always try

pipelining, provided the circuit is not sensitive to the

latency in the extra number of clock cycles. The principle

is explained in Fig. 13. It consists in breaking up the large

combinatorial delay by inserting flip-flop stages after

intermediate results. In this case, it is better to modify the

original design rather than using the synthesis tool, since

this could lead to an incoherency between HDL sources

and final hardware.

Fig. 13: Pipelining

Finally, time-multiplexing in conjunction with

hardware replication can also be a powerful tool to

prevent timing pathologies. The principle, depicted in Fig.

14, consists in splitting a data path in two, making each

branch work at half the speed, and recombining the

results at the end to regenerate a data flow at the design

clock frequency.

Fig. 14: Time multiplexing.

As an example of how these tools can be used in

practical cases, let’s examine a performance problem that

arouse in the phase filter of a PLL used to track bunch

frequency in CERN’s PS. Figure 15 shows the original

filter design, a first order Infinite Impulse Response (IIR)

filter implementing the transfer function y[n+1] = a y[n] +

b x[n]. Signal y goes back to the output flip-flop through

a multiplier and an adder, and these combinatorial delays

are not compatible with the clock frequency. What can we

do?

Fig. 15: A simple IIR filter with a performance problem

We can calculate y[n+2] = ay[n+1] + bx[n+1] = a2y[n]

+ abx[n] + bx[n+1], and see what the resulting direct

implementation would look like in Fig. 16.

Fig. 16: Look-ahead scheme for IIR

The circuit looks now much more favorable for timing

improvements. The leftmost part looks like an FIR and

can be pipelined as much as necessary. The second part

now contains two flip-flops in series in the feedback path,

which can be used for retiming. The technique we used is

called ‘look-ahead’ and is very common for boosting the

speed of digital circuits.

Powering FPGAs

FPGAs are typically powered from various supply rails.

They need different voltages for the internal logic, the

Input/Output (I/O) circuitry and some analog blocks like

PLLs. Typical specifications include a +/-5% tolerance on

the actual value of the voltage and monotonic ramping of

the supplies during power-up. While it is not proven that

ramping in a non-monotonic way would not work, FPGAs

are not tested that way after manufacturing, so it is better

to guarantee a monotonic ramp in order to avoid

surprises. Devices also specify a minimum and a

maximum ramping time for the voltage rails. Again, this

is just how they are tested after production, and it is very

wise to follow these guidelines.

An important aspect to bear in mind concerns in-rush

current at power-up due to the decoupling capacitors on

the power supply rails. If C is the total capacitance,

Ic=C* V/ T, so one might want to slow the ramping

process down using a soft-start circuit in order to avoid

the kick-in of protection mechanisms in regulators, which

could in turn compromise monotonicity.

Sequencing of supply voltages, i.e. making one

available, then another one and so on, was a required

practice in old technologies, and nowadays it is only

recommended. It seems sensible that the I/O stages get

power only after the internal logic is properly configured.

A Supply Voltage Supervisor (SVS) chip can be used to

control the process. Sequencing is also good to make sure

that the main (typically 5V) rail feeding the regulators is

well established (i.e. all capacitors charged) before they

begin requesting current from it. Otherwise the 5V

protection could trip and spikes could appear in the output

of the regulators.

The design of a proper bypassing network using

capacitors is also a critical issue. A decoupling network

should look like a short to ground for all the frequencies

of power supply noise we want to reject. At high

frequencies, like the ones of interest for this discussion, a

capacitor chip can be modeled as an equivalent RLC

circuit to take into account the various imperfections in its

design. The parasitic inductance dominates at high

frequencies, and is (almost) exclusively determined by the

package type of the capacitor. The global frequency

response presents a downward slope at low frequencies

whose value depends on the capacitance, and an upward

slope at high frequencies whose value depends on the

parasitic inductance. The minimum of the curve thus

depends on the capacitance value, and can be made

arbitrarily wide by selecting a suitable set of capacitor

values and placing them in parallel. High-value capacitors

take care of low-frequency perturbations and can be

placed relatively far away from the chip, while low values

of capacitance (typically 10 nF), can be placed close to

the chip – ideally below it – to take care of the fast

perturbations. Reference [6] can be consulted for further

details.

Interfacing to the outside world

Modern FPGAs have very versatile I/O blocks which

make them easy to interface to other chips. In this section,

we look in particular at issues which could appear when

interfacing to Analog to Digital Converters (ADCs) or

DACs.

Whenever a design deals with high speed, high pin

count parallel busses, as is often the case when interfacing

FPGAs and ADCs/DACs, there is potential for noise

problems. This is because the I/O drivers in the FPGA

commute state all at the same time, creating large current

surges in the Power Distribution System (PDS). The PDS

should be well decoupled using the appropriate mix of

capacitors as discussed above, but it cannot filter all the

noise at all frequencies. In addition, sampling many bits at

a high frequency can pose synchronization problems. If

the clock edge is very close to the transition of any of the

data bits, a problem known as metastability – to be

explained later – can arise. It is therefore desirable to

avoid simultaneous fast-switching of large busses if

possible. One example where this is possible is in the

sampling of high frequency, low bandwidth analog

signals. According to sampling theory, there is no need to

sample them in their main Nyquist zone, i.e. with at least

twice their frequency. It is sufficient to sample them at

least faster than twice their bandwidth – which can be

significantly slower. This can be a solution for systems

where latency is more or less a secondary concern, but it

might not be possible for feedback systems. Another

possibility for mitigating noise problems is to choose

ADC and DAC chips which use differential signaling for

the data bits and the clock. Currents in differential signals

go in through one line and out of the other, without any

net demand on the PDS. The use of differential signaling

also creates negligible ground bounce. Ground bounce is

caused by the fact that the impedance between the ground

pins and the ground plane is not exactly zero. This can

cause a perceived change in ground level, as seen by the

digital chip, when it consumes significant current. This

impedance has a resistive component but also a very

important inductive component which will create voltage

jumps as a function of dI/dt. Therefore, another way to

improve the noise problem is to feed the digital outputs of

the ADC with the lowest realistic supply voltage. Current

generation ADCs can accept digital supplies in the range

2.0-2.5V. In addition, current can be reduced by placing

resistors in series with the ADC outputs.

Another aspect to bear in mind when designing FPGA

systems is the state of I/O drivers during power-up. Most

FPGA chips provide a possibility, through external

jumpers, of selecting whether the I/Os will be pulled-up

or tri-stated during the power-up process. The tri-state

option lets the designer control the power-up state of each

pin through external pull-up or pull-down resistors. This

is important if glitch-free operation is requested during

startup.

Clock domains and metastability

Oftentimes a designer is faced with an input signal that

is not synchronized with the system clock, i.e. its rising

and falling edges do not maintain a constant delay with

respect to the rising edge of the clock signal. Let’s

imagine for example that we have a card where an FPGA

is clocked by an on-board 100 MHz oscillator, and the

card is fed with an external input representing the

revolution frequency of a synchrotron. Let’s also assume

that the revolution tick has to be fed to two different state

machines inside the FPGA, and that the correct

functioning of this design relies on both state machines

detecting the revolution tick during the exact same period

of the system clock, which is used as the clock for the

state machines.

A naïve design might split the revolution tick signal in

two before feeding it to the state machines. The problem

with this solution is that the revolution tick might

eventually, after going through several layers of

combinatorial logic, find itself at the D inputs of two

different flip-flops inside the FPGA. But because the

propagation delays of the revolution signal going through

the two paths are different, one flip-flop might already

clock it in as ‘1’ while the other still sees a ‘0’.

A less naïve designer would then propose to feed the

revolution tick to the D input of a flip-flop to begin with,

and only then split in two. Indeed, the rate of failures

would go down, but every now and then we would still

see an incoherency between the two state machines. The

culprit is an effect known as ‘metastability’ which afflicts

flip-flops when a transition at their D input occurs too

close in time to the rising edge in the clock input. In that

case, their Q output hesitates until it finally settles to one

of the two possible output values. The resolution time can

be arbitrarily long as we push the two edges closer and

closer in time. In our second design, from time to time the

Q output of the synchronizing flip-flop will go

metastable, with a resolution time such that – on the next

system clock tick – one of the two subsequent flip-flops

will already see a ‘1’ when the other one still sees a ‘0’.

While it seems that this could become a never ending

story, in fact, for all practical purposes, the circuit in Fig.

17 will fix the problem.

Fig. 17: Two flip-flop synchronizer

Now, for typical system clock and asynchronous input

frequencies, the chances that the second flip-flop goes

metastable after the first one did on the previous cycle of

the system clock are vanishingly small. One can easily

design a circuit that will fail on average once every

million years.

The discussion above applies equally well to any design

with more than one clock domain where data must be

transferred from one domain to the other. By clock

domain, we mean a part of the design which is clocked by

a single common clock. Let’s imagine a designer needs to

transfer a 16-bit number from one domain to another.

Inserting a synchronizer for each bit would not help, since

different flip-flops will see different set-up times of the

data with respect to their clock. Indeed, these set-up times

vary with time in a random way! The solution is to design

the emitter block so that it asserts a data strobe when the

data are ready, and holds the data stable for a suitable

amount of time. The receiver circuit can then sample the

strobe with a two flip-flop synchronizer and clock the

data in once it senses a ‘1’ on the strobe line. A variation

on this circuit includes a handshake whereby the receiver

sends back an acknowledge line to the emitter, which in

turn synchronizes it into its clock domain. Once the

emitter senses a ‘1’ on the acknowledge line, it knows it

can change the state of the data lines to prepare the next

transfer.

Sometimes the above scheme will not work because

data comes in bursts at a speed which makes it impossible

to perform the full handshake. In those cases, a First-In-

First-Out (FIFO) block is needed with each of its sides

clocked by a different clock.

Safe design

There is at least one asynchronous signal in almost all

designs: the external reset. In many cases, it is very

important to handle this signal properly in order to

guarantee coherency of different parts of a design. If we

return to the example of the two different state machines

within an FPGA, both running off the same system clock,

and we require that they both ‘wake up’ during the same

clock tick after the de-assertion of the reset signal, we

find ourselves with a need to treat the reset signal as we

treated the revolution tick above, i.e. we need to feed it to

a synchronizer before using it in the design.

The best reset strategy, not always possible, is to

synchronize the reset to the system clock and then use it

as a synchronous reset. This means that the reset line is

treated as any other synchronous signal. It will enter some

combinatorial block and affect its output, which will then

be feed to the D input of a flip-flop. Chances are that the

output of that combinatorial logic block will go to a

predefined ‘reset’ state irrespective of other inputs if the

reset line is active, but there is really nothing special

about the reset line in this case from a topological point of

view.

Things change if, for some reason like saving

resources, the designer wants to use the asynchronous

reset input present in all flip-flops. There is still a certain

guarantee of coherency if the reset fed to these inputs has

been properly synchronized in advance, but this will

greatly depend on the clock period and the delay to reach

each asynchronous reset input. Typical place & route

tools will not include these paths in their timing analysis

because they don’t go from Q outputs to D inputs. It is

really best if the asynchronous reset can be avoided

altogether.

Another important topic in safe design is that of

complete state coverage in state machines. If a state

machine has 5 different states, it will need at least 3 signal

lines to represent its current state. But with 3 lines one

can have 8 different states, 3 of which will be illegal. It is

the designer’s responsibility to detect these states and take

the state machine to a safe state if it goes to one of them.

Now, how can a state machine go to an illegal state if no

combination of inputs and states are supposed to take it

there? The state vector is made of three lines, and each of

these lines is – we can assume this without loss of

generality – fed from the Q output of a flip-flop. High

energy particles crossing the FPGA can induce what is

called a Single Event Upset (SEU), flipping the state of

one of the flip-flops to a new one, which might make the

new three-bit combination illegal. With process

geometries shrinking, one no longer needs a high energy

accelerator to produce SEUs. Atmospheric particles will

produce them at a rate high enough to make it a major

concern for safety critical systems.

Sometimes in high energy accelerator applications, an

FPGA must live in a highly radioactive environment. This

is a completely different game. Here are three techniques

designers use frequently to make their designs more

robust under such adverse conditions:

- Antifuse technology. An antifuse is an element

that creates a short circuit when overheated, i.e. exactly

the opposite of what a fuse does. FPGAs based on

antifuse technology are inalterable at least as far as the

configuration memory is concerned. But we know that,

among the RAM bits of a typical FPGA, the vast majority

of them are configuration bits, so antifuse technology is a

major improvement in terms of resistance to radiation.

The negative side is the price of antifuse chips and also

their lower densities. These devices are roughly one

generation behind in terms of silicon processes.

- Scrubbing. This is a protection scheme for the

configuration memory of SRAM-based devices. As we

said, most of the FPGA RAM bits that are susceptible of

being affected by a SEU are in fact configuration bits.

One can read the configuration stream back repeatedly to

check if there has been any corruption, and then take

corrective action if needed. The device that scans the

configuration bits must itself be more robust than the

FPGA being checked. It is typically antifuse-based.

- Triple Mode Redundancy (TMR). This technique

consists in replicating the same piece of logic three times

and adding a set of voters to detect whether there was a

SEU in one of the blocks. It is complementary to

scrubbing because it takes care of design bits instead of

configuration bits. Figure 18 shows the principle for the

simple example of a counter. If a mismatch is found, the

losing counter will be informed and correct its value

accordingly.

Fig. 18: TMR with state feedback

It is assumed that the probabilities to have a double

upset that will affect two counters at the same time are

negligible, but this may not be a very realistic assumption

with the ever-diminishing process geometries. A single

high-energy particle can indeed affect more than one

transistor around the impact area. This is why some

vendors are developing software that automatically

generates TMR logic and places the different parts of the

ensemble in different, geographically distant, areas of the

chip. Notice also that our FPGA contains now three

counter outputs instead of one. With only one output, a

SEU in one of the output transistors could defeat the

whole TMR scheme. If the counter value is to be used

outside the FPGA, decision logic must be implemented

outside using a radiation-hard scheme in order to figure

out the current value of the counter.

For unmatched reliability, radiation-hard antifuse

products are available. Every flip-flop in these devices is

TMRed in silicon, with feedback TMR built in. Needless

to say, these devices are extremely expensive and

reserved for the most demanding applications in terms of

radiation hardness. The extra logic needed for the TMR

scheme and the state feedback are also a problem if

excellent timing performance is required.

ACKNOWLEDGEMENTS

I would like to acknowledge many fruitful and

interesting discussions on this topic with several

colleagues. Special mention goes to Tony Rohlev

(Elettra), Andrea Boccardi, Christos Zamantzas, Greg

Kasprowicz, Uli Raich (CERN), Matt Stettler (LANL)

and Larry Doolittle (LBL).

For presentation material, I would like to thank

specially Jeff Weintraub (Xilinx University program) and

Prof. Stewart (University of Strathclyde).

REFERENCES

[1] John F. Wakerly, Digital Design: Principles and

Practices, 4th ed. (Prentice Hall, 2006).

[2] Andrew Rushton, VHDL for Logic Synthesis, 2nd

ed. (John Wiley & Sons, 1998).

[3] Uwe Meyer-Baese, Digital Signal Processing with

Field Programmable Gate Arrays, 3rd ed. (Springer,

2007).

[4] John G. Proakis, Dimitris K. Manolakis, Digital

Signal Processing, 4th ed. (Prentice Hall, 2006).

[5] Ray Andraka, A survey of CORDIC algorithms for

FPGAs, Proc. 1998 ACM/SIGDA 6th International

Symposium on Field Programmable Gate Arrays,

Feb. 22-24, Monterrey, CA, USA, pp. 191-200. URL:

http://www.andraka.com/files/crdcsrvy.pdf.

[6] Mark Alexander, Power Supply Distribution (PDS)

Design: Using bypass/decoupling capacitors, Xilinx

application note 623. URL:

http://www.xilinx.com/support/documentation/application

_notes/xapp623.pdf.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

